Generic Process Visualization Using Parametric t-SNE
نویسندگان
چکیده
منابع مشابه
Parametric nonlinear dimensionality reduction using kernel t-SNE
Novel non-parametric dimensionality reduction techniques such as t-distributed stochastic neighbor embedding (t-SNE) lead to a powerful and flexible visualization of high-dimensional data. One drawback of non-parametric techniques is their lack of an explicit out-of-sample extension. In this contribution, we propose an efficient extension of t-SNE to a parametric framework, kernel t-SNE, which ...
متن کاملVisualization of SNPs with t-SNE
BACKGROUND Single Nucleotide Polymorphisms (SNPs) are one of the largest sources of new data in biology. In most papers, SNPs between individuals are visualized with Principal Component Analysis (PCA), an older method for this purpose. PRINCIPAL FINDINGS We compare PCA, an aging method for this purpose, with a newer method, t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualiza...
متن کاملVisualizing Data using t-SNE
We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. ...
متن کاملAn Analysis of the t-SNE Algorithm for Data Visualization
A first line of attack in exploratory data analysis is data visualization, i.e., generating a 2-dimensional representation of data that makes clusters of similar points visually identifiable. Standard JohnsonLindenstrauss dimensionality reduction does not produce data visualizations. The t-SNE heuristic of van der Maaten and Hinton, which is based on non-convex optimization, has become the de f...
متن کاملAccelerating t-SNE using tree-based algorithms
The paper investigates the acceleration of t-SNE—an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots—using two treebased algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in O(N logN). Our experiments show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2018
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2018.09.262